
Security and Dynamic Class Loading in Java: A Formalisation�
T. Jensen D. Le Métayer T. Thorn

IRISA/CNRS/INRIAy
Campus de Beaulieu

F-35042 Rennes Cedex, France

Email: fjensen,lemetayer,thorng@irisa.fr

Abstract
We give a formal specification of the dynamic loading of

classes in the Java Virtual Machine (JVM) and of the visi-
bility of members of the loaded classes. This specification
is obtained by identifying the part of the run-time state of
the JVM that is relevant for dynamic loading and visibil-
ity and consists of a set of inference rules defining abstract
operations for loading, linking and verification of classes.
The formalisation of visibility includes an axiomatisation
of the rules for membership of a class under inheritance,
and of accessibility of a member in the presence of accessi-
bility modifiers such asprivate andprotected. The
contribution of the formalisation is twofold. First, it pro-
vides a clear and concise description of the loading pro-
cess and the rules for member visibility compared to the
informal definitions of the Java language and the JVM.
Second, it is sufficiently simple to allow calculations of the
effects of load operations in the JVM.

1 Introduction
Security is one of the most important issues concerning

the Java language, at least in the context of its application
to the programming of mobile code. Java involves a unique
combination of factors which makes the study of security
issues especially challenging:� The philosophy of the designers of the Java environ-

ment is that security mechanisms are language-based.
Developers are encouraged to write code exclusively
in Java, which implies that all security controls can be
achieved through the Java abstract machine.� Java was explicitly designed to be a small language
including only well-understood features. Java is sup-�Published in the Proceedings of the 1998 IEEE InternationalConfer-

ence on Computer Languages, Chicago, Illinois, May 14-16, 1998, p.4-
15. Revised: Mars 12, 1999.yPart of this work has been done in the context of Dyade (R&D joint
venture between Bull and Inria).

posed to be a “type safe” language. This claim is still
a matter of debate but even if this goal is not quite
achieved yet, it is reasonable to believe that the fun-
damental choices underlying the language are suffi-
ciently sound to make it possible to fix the remaining
problems in the near future.

However, as shown by the various discussions triggered
by the claims about the security of Java, the language
still involves a number of innovations and subtleties which
make its semantics far from obvious. The most striking
features of the language in this respect are tied to the dy-
namic loading of classes:� Verification of type soundness is carried out at four

different times in Java: at compile time, at load time,
at link time and at run time. The first one applies to
source code relatively to a static environment, while
the other ones apply to class files, the concrete repre-
sentation of a compiled class definition, relatively to
a set of dynamically loaded classes.� The notion of class loader plays a critical role in
the security of Java. Each class is associated with a
specific class loader which corresponds to a specific
name space in the virtual machine. The Java secu-
rity model relies on name spaces to ensure that an
untrusted applet cannot interfere with other Java pro-
grams [7].

Another important aspect of the security of the language is
the visibility modifiers (default, public, protected, private)
which are attached to classes and members in order to re-
strict the access to these. For instance, attributes with a
defaultvisibility are fully accessible only within their def-
inition package.

This combination of features inevitably leads to com-
plexities and uncertainties which can have unfortunate con-
sequences in terms of security. This is manifested by the

1

fact that apparently harmless programs can lead to unex-
pected security flaws [13]. Furthermore some features of
the informal specification of the language and the virtual
machine are subject to different interpretations.

This situation is clearly not acceptable for a language
in which security is such an important issue and we be-
lieve that the only way to tackle these problems is through
an appropriate formalisation. But a formalisation is use-
ful only if it really helps reasoning about security prop-
erties. It should be defined at the right level of abstrac-
tion, which means precise enough to include all the secu-
rity critical features of the language (e.g. visibility rules,
dynamic loading and class loaders) and abstract enough to
focus on the significant issues and avoid all the irrelevant
details (w.r.t. security) of the complete semantics.

Several formalisations of Java have been proposed in
the literature. Each one has its own merits and sheds some
light on the language, but we believe that none of them
really satisfies the above criteria. At the language level,
Drossopoulou and Eisenbach [4] have proposed an oper-
ational semantics and a type system for core Java, and
proved that the type system is sound with respect to this
semantics. However, this description does not deal with
dynamic class loading at all. At the virtual machine level,
the tour de forceformalisation of the Java virtual machine
by Bertelsen [1] seems too detailed to be used for practical
calculations.

In this paper, we propose a formalisation of the visibil-
ity rules in the hierarchy of classes loaded into a virtual
machine and their evolution through dynamic loading and
linking. The formalisation is based on the informal specifi-
cation of the visibility rules in the Java language definition
[8]. We relate each of our rules to the explanations taken
from [8], explaining our interpretation when appropriate.
The formalisation of dynamic class loading is based on [9].
The two main contributions of the formalisation presented
in this paper are the following:� It provides a clear and concise description of the load-

ing process and the rules for member visibility com-
pared to the definitions of the Java language and the
Java virtual machine (JVM). The informal definition
of these rules and their interaction are quite complex,
and the first benefit of the formalisation is a better un-
derstanding of those issues.� It is sufficiently simple to allow calculations of the
effects of load operations in the JVM. Indeed, we
believe this specification to be at the right level of
abstraction to help reasoning about security proper-
ties in Java because it is precise enough to include
the security-critical features of the language (such as
visibility rules, dynamic loading and class loaders)

and abstract enough to avoid all the irrelevant details
(w.r.t. security) of the complete semantics.

We abstract the state of the virtual machine into a set of
relations describing the hierarchy of classes and members
with their visibility rules. We do not consider computations
on basic values here since they do not have any impact on
the abstract state (and the security issues). As a conse-
quence, we do not describe type checking either, consider-
ing it a complementary issue which can be tacklede.g., by
using the system presented by Qian in [12]. Then we show
that this formalisation allows us to expose in a straightfor-
ward way a security problem that was discovered empiri-
cally in [13].

It is assumed that the reader is familiar with Java and its
terminology concerning classes, interfaces, and visibility
modifiers. The next section summarises our notation for
these entities.

2 Syntax
Below we formalise the concepts from Java programs

relevant to our point of view. These are names (of pack-
ages, classes, interfaces, fields, and methods), relations
(subclassing and implements), types, and access modifiers.
All these concepts together lead to the definition of aclass
file. The class file is the representation of a compiled Java
class that can be loaded into the JVM.

2.1 Package, class, and interface names
Each class belongs to a package which defines the limits

of visibility of the protected members.

PackageName::= Identifier j PackageName0:0 Identifier

Different classes and interfaces may appear with the
same name in different packages. To disambiguate them,
we use theirfully qualified names, i.e., their name paired
with the package of their definition. The setClassis the
set of valid class and interface names.

Class ::= PackageName0:0 Identifier

Classes and interfaces declare a number of fields and
methods. The namespaces of the two are disjoint. The
fields of a class are class variables, instance variables, and
constants, while only constants are allowed as interface
fields. For our purpose, we do not need to distinguish be-
tween the different kinds of fields and just represent them
all with Field, the set of field names paired with the class
of their definition. As Java allows overloaded methods,
the type of the arguments is needed to distinguish between
different methods with the same name, thusMethodis the
set of methods (a pair of method name and argument signa-
tures) paired with the class (or interface) of their definition.

We refer to the disjoint union1 of these sets asMember.
The setTypeof argument types is defined in Section 2.3.

FieldDesc = Identifier

MethodDesc = Identifier� Type�
MemberDesc = FieldDesc] MethodDesc

Field = Class� FieldDesc

Method = Class�MethodDesc

Member = Field] Method= Class�MemberDesc

To ease the manipulation of the names fromClassand
Member, we define three selectorspackage, origin, andde-
scriptor. The selectorpackagegives the package name part
of a class or interface name,origin the class or interface in
which the member is declared, anddescriptorthe descrip-
tor part of a member name:

package : Class! PackageName

origin : Member! Class

descriptor : Member! MemberDesc

Since constructors play no particular rôle in this paper,
we follow the operational reality and model the constructor
of a class as a special method<init>, distinct from all
user definable methods. The correspondence is simple:

new T(...) �! T.<init>(...)

new super(...) �! super.<init>(...)

this(...) �! this.<init>(...)

2.2 Access modifiers
Classes, interfaces, and class members can have their

visibility changed through the use of a modifier from
Modifier.2

Modifier = fpublic;protected;default;privateg
The modifier only gives alocal constraint. The over-

all access is determined by the combination of the restric-
tions on the package, the class, and the member itself. For
classes and interfaces, onlypublic anddefault ap-
ply. Assuming no other restrictions apply,public classes
can be accessed everywhere, while thedefault visibility
only grants access to classes from its package.

For members,public denotes that access to the entity
is unconstrained. Aprivate member is only accessible
within its class of definition. Thedefault accessibil-
ity of a member is restricted to classes within the same

1We use disjoint union in order to preserve the information whether a
member is a field or a method.

2There is nodefault keyword in Java, but the absense of a modifier
implies it. To simplify, we assume that it is explicitly given.

package as itself. Access of aprotected member is
slightly more complicated: access is generally granted in
subclasses and in classes from the same package as the
member. For interface members the visibility is always
public. The precise semantics of modifiers in defined in
Sections 4–5.
2.3 Types

The set of basic types such asvoid, int and
boolean are represented by the setBaseType. Together
all classes, interfaces, and arrays are known as reference
types andRefTypeis defined as the smallest set satisfying

Class� RefType8t 2 RefType[BaseType: t[] 2 RefType

where an array with elements of typet is written t[]. The
set of expressible types is the union of base types and ref-
erence types:

Type= BaseType[RefType

2.4 Class files
The class file is a concrete representation of a compiled

Java class and is the unit for linking. We model the class
file with an abstract type,ClassFilewith corresponding op-
erations:

name : ClassFile! Class

super : ClassFile,! Class

implement : ClassFile! P(Class)
member : ClassFile! P(Member)

member-type : ClassFile�Member,! Type

member-modifier : ClassFile�Member,! Modifier

class-modifier : ClassFile! Modifier

references : ClassFile! P(Class)
where� namegives the fully qualified name of the class im-

plemented by the class file,� supergives the name of the super class,� implementgives the set (possibly empty) of imple-
mented interfaces,� membergives the set of members declared for the
class,� member-typegives the type (or return type for meth-
ods) of members,� member-modifiergives the declared modifier of mem-
bers, and

� class-modifiergives the declared access modifier for
the class itself.� referencesgives the set of class names referenced
from the class file, including those used by methods.

The functionsmember-typeandmember-modifierare only
defined on members from the class file and are thus par-
tial functions, denoted by,!. Similarly, superis a partial
function since the classjava.lang.Object does not
have a super class. It follows from the definition that for a
given class filecf ,8m 2 member(cf) : origin(m) = name(cf)
3 Dynamic loading

Classes and interfaces are loaded into the JVM dy-
namically when they are either needed or explicitly de-
manded. The loading of classes is done by the methods
loadClass of theClassLoader classes. These meth-
ods accept as arguments a fully qualified name and deter-
mine where to search for a class file containing a class of
that name. The return value is an object of classClass.
There are two noticeable aspects about the relationship be-
tween class loaders and classes:� To every class is associated the class loader object that

loaded the class. It is this class loader that is invoked
when the code in the class necessitates another class
to be loaded.� Once a class loader has loaded a class with namen
and returnedClass objecto, all subsequent calls to
that class loader withn as argument will return the
same objecto.3

The first aspect means that a loaded class is identified by
specifying its class file and the class loader that loaded it.
We defineClassLoaderas an abstract set of class loaders
with the system class loader,scl, as a distingushed element.
The set of loaded classes is the set product ofClassLoader
andClassFile:

LoadedClass= ClassLoader�ClassFile:
We use the notationc:cf andc:cl to denote the class file
and class loader of a loaded classc.

The user is free to program his own class loader whose
behaviour can be completely different from that of the sys-
tem class loader, as long as it respects the second require-
ment above. The behaviour of a class loader can thus be
modelled by a functionW : LoadedClass�Class,! LoadedClass

3Although 2.16.2 in the JVM Specification [9] seems to indicate some-
thing else. The newer 1.1 implementation follows this rule,but we haven’t
been able to locate any documentation confirming this.

that for a given class loadercl (itself a loaded class) and a
class namen returns a loaded classcn. The functionW
satisfies:8cl 2 LoadedClass; n 2 Class:W(cl; n) = c) name(c:cf) = n
Notice that the class loader attached toW(cl; n) may be
different fromcl, sincecl may choose to delegate the load-
ing to another class loader (cf. the example in Section 7).

The loading of a classc recursively triggers the loading
of the superclass ofc; thus after loadingc with class loader
cl, all classes betweenc and the root of the class tree have
been loaded, but not necessarily bycl. If cl delegates the
loading of certain classes to another class loadercl’ then
some of the superclasses could be loaded bycl’ . The load-
ing process will be formalised in Section 6.2.

3.1 Subclass and implements relation
A loaded class is an immediate subclass of another

loaded class iff they are loaded by the same class loader
and the declared super class of the former matches the
name of the latter. We define the following relations rel-
ative to a setS of loaded classes since this will later be
our representation of the state of the virtual machine (Sec-
tion 6).

sub � LoadedClass� LoadedClassc; c0 2 Sc0 = W(c:cl; super(c:cf))S ` c sub c0 (1)

The subclass relation sub� is the reflexive, transitive clo-
sure of sub . S ` c sub� c (2)c; c0; c00 2 SS ` c sub c00S ` c00 sub� c0S ` c sub� c0 (3)

Likewise we lift the notion that a class implements
an interface to a relation between two instances of
LoadedClass(where the latter represents an interface):

impl � LoadedClass� LoadedClassc; i 2 S
name(i:cf) 2 implement(c:cf)i = W(c:cl; name(i:cf))S ` c impl i (4)

4 Membership and inheritance
The concepts of membership and inheritance are not ex-

plicit in the class files, but can be inferred from the syntac-
tic information outlined in Section 2. Below we formalize
such an inference system for the membership and inheri-
tance based on their informal description in the Java spec-
ification4. In order to integrate this with the semantics of
dynamic loading (Section 6) every rule is relative to a set
of loaded classesS and a current classcc2 LoadedClass.
4.1 Members

Throughout this section,x-references refer to [8].x6.4.2
states the conditions for class membership (which are re-
peated inx8.2):� Members inherited from its direct superclass (x8.1.3)� Members inherited from any direct superinterfaces

(x8.1.4)� Members declared in the body of the class (x8.1.5)x6.4.3 states the conditions for interfaces membership:� Members inherited from any direct superinterfaces
(x9.1.3)� Members declared in the body of the interface (x9.1.4)

In the following, we combine these rules. We usem to
denote a member fromMemberandc to denote a loaded
class, represented by aLoadedClassand define ‘member-
of’ as a relation betweenm andc.

member-of� Member� LoadedClassm 2 member(c:cf)S; cc` m member-ofc (5)S; cc` c inheritsmS; cc` m member-ofc (6)

The ‘inherits’ relation is defined in the next section.
4.2 Inheritance

Following [8] the rules for inheritance are divided into
two parts. The first part gives an over-estimation, which is
then constrained by the second. A general, but not suffi-
cient, condition for inheritance is given byx8.2:

“Members of a class that are declared private are
not inherited by subclasses of that class. Only
members of a class that are declared protected or
public are inherited by subclasses declared in a
package other than the one in which the class is
declared.”

4The definition is dependent on the concept of package access which
in itself is system-dependent (file access etc). We do not model this aspect
and assume that an occurence of a loaded class in one of the rules below
implies that the class loader could obtain access to the package of the
class.

We formulate this with the ‘inheritable-by’ relation be-
tween a memberm and a loaded classc. The class name
origin(m) associated withm is first translated into a loaded
classcm, and then the modifier associated withm in the
class file ofcm is determined:

inheritable-by� Member� LoadedClasscm = W(c:cl; origin(m))
member-modifier(cm:cf ;m) 2 fprotected;publicgS ` c sub� cm S; cc` m inheritable-byc

(7)cm = W(c:cl; origin(m))
member-modifier(cm:cf ;m) = defaultS ` c sub� cm
package(name(c:cf)) = package(origin(m))S; cc` m inheritable-byc (8)

Other inheritance rules for members appear in two places
in the specification.x8.3 deals with class fields and states:

“A class inherits from its direct superclass all the
fields of the superclass that are both accessible to
code in the class and not hidden by a declaration
in the class.”

A field is hiddenby declaring another field with the same
name in a subclass.x8.4.6 deals with class methods and
states:

“A class inherits from its direct superclass all the
methods of the superclass that are accessible to
code in the class and are neither overridden nor
hidden by a declaration in the class.”

A class (resp., instance) method is said to behidden(resp.,
overridden) if a subclass declares a class (resp., instance)
method with the same name and signatureand the former
is visible in that subclass. Again, analogous inheritance
rules are stated for interfaces inx9.2. We express the con-
straint imposed by “neither overridden nor hidden” with
the relation ‘undeclared-in’� Member� LoadedClass.8m0 2 member(c:cf) : descriptor(m) 6= descriptor(m0)S; cc` m undeclared-inc

(9)
The relations ‘inherits’ between a memberm and a loaded
classc is defined based on the conditions above. Notice
that the notion of accessibility here is the one given by
‘inheritable-by’ and not the one that follows in Section 5.1.

inherits� LoadedClass�Member

S ` c subc0S; cc` m member-ofc0S; cc` m inheritable-bycS; cc` m undeclared-incS; cc` c inheritsm (10)S ` c impl c0S; cc` m member-ofc0S; cc` m undeclared-incS; cc` c inheritsm (11)

Interface members are always public, so we leave out the
‘inheritable-by’ condition for interfaces.

5 Accessibility
Only member modifiers have been used to define the

‘member-of’ and ‘inherits’ relations. We show in this sec-
tion how class and interface modifiers influence the acces-
sibility of a member of one class from another class. This
is formalised by the relation ‘accessible’ defined below.

accessible� LoadedClass�Member

5.1 Class and interface accessibility
These rules determine when a class (or interface)c is

accessible by methods within the current classcc. x6.6.1
states:

“If a class or interface type is declared public,
then it may be accessed by any Java code that can
access the package in which it is declared. If a
class or interface type is not declared public, then
it may be accessed only from within the package
in which it is declared.”

The accessibility of packages is dependent on the class
loader. As for the rules for membership (see footnote at the
beginning of Section 4), the rules suppose that all packages
needed could be accessed.

type-acc� LoadedClass

class-modifier(c:cf) = publicS; cc` c type-acc (12)

class-modifier(c:cf) = default

package(name(c:cf)) = package(name(cc:cf))S; cc` c type-acc (13)

5.2 Member accessibility
The ‘accessible’ relation determines the accessibility of

a memberm of a classc from the current class. The mem-
berm

� is defined in the class namedorigin(m), correspond-
ing to the loaded classW(cc:cl; origin(m)) under the
current classcc,� belongs to an objecto, which is an instance of classc,
and� is invoked in an instruction appearing in a method of
the current class.

The specification of the Java language [8,x6.6.1] states:

“A member (field or method) of a reference type
or a constructor is accessible only if the type is
accessible and the member or constructor is de-
clared to permit access.”

In particular, since classes and interfaces have their own
accessibility modifiers, it is necessary to check whether the
modifier allows access from the current class. However, it
seems that this check is not performed in some implemen-
tations of the virtual machine; thus, if we want to model
such machine behaviour, the check “c type-acc” should be
left out of ‘accessible’ defined below.

accessible� LoadedClass�MemberS; cc` m member-ofcS; cc` c type-accS; cc` (c;m) permit-accS; cc` (c;m) accessible (14)

The modifier of memberm is found in the class fileW(cc:cl; origin(m)):cf . The rule ‘permit-acc’ details the
extra conditions determined by the declared access modi-
fication. The case for protected members is treated sepa-
rately below.

permit-acc� LoadedClass�Member

member-modifier(W(cc:cl; origin(m)):cf ;m) = publicS; cc` (c;m) permit-acc
(15)

member-modifier(W(cc:cl; origin(m)):cf ;m) = protected

package(name(cc.cf)) = package(origin(m))S; cc` (c;m) permit-acc
(16)

member-modifier(W(cc:cl; origin(m)):cf ;m) = protectedS ` ccsub� W(cc:cl; origin(m))S; cc` (c;m) prot-accS; cc` (c;m) permit-acc
(17)

member-modifier(W(cc:cl; origin(m)):cf ;m) = default

package(name(cc.cf)) = package(origin(m))S; cc` (c;m) permit-acc
(18)

member-modifier(W(cc:cl; origin(m)):cf ;m) = privateW(cc:cl; origin(m)) = ccS; cc` (c;m) permit-acc
(19)

For protected members,x6.6.2 specifies:

“A protected member of an object may be ac-
cessed from outside the package in which it is
declared only by code that is responsible for the
implementation of that object.”

descriptor(m) 6= <init> S ` c sub� ccS; cc` (c;m) prot-acc (20)

For protected access between different packages we thus
have the requirement that the three classes involved form
the hierarchyc sub� ccsub� W(cc:cl; origin(m)):
6 The Java virtual machine
6.1 The JVM state

The part of the state of a JVM that is relevant for the op-
erations below is given by thecurrent class ccthat caused
their invocation and the set of classes loaded into the ma-
chine. S 2 State= P(LoadedClass)
The state determines a set of semantic relations on inher-
itance, accessibility and visibility of names in classes, as
explained in the preceding sections. The purpose of this
section is to describe how the instructions of the virtual ma-
chine [9] transform this state. This transformation is itself
dependent on the visibility relation determined by the cur-
rent state of the machine. In the following, we formalise
two abstract operationsload and link that model the be-
haviour of the JVM when loading and linking classes. The
operationsload or link receive as arguments the classn
to be loaded or linked. We define a relation of the formS; cc` op(n)�S0, meaning that execution of operationop
in stateS leads to stateS0.5

5The current class,cc, is unchanged after execution. It is straightfor-
ward to turn this into a transition relation of formop(n):(S,cc)! (S’,cc),
but for expository reasons we have chosen the other format.

6.2 Loading
Some JVM instructions refer to names of classes, in-

terfaces, methods or fields. Their execution provokes the
loading of classes containing the definition of these names
if these have not already been loaded. For example, execut-
ing the JVM instruction for calling a method requires the
loading of the class in which the method is defined. Fur-
thermore, loading of a class always entails the loading of
its superclass; by recursion, the net result is that all classes
between the class initially to be loaded and the top of the
class hierarchyjava.lang.Object are loaded. This
loading is performed by the class loader associated with
the current class (cf. Section 3). The following rule for-
malises the loading process.W(cc:cl;java.lang.Object) = cnS; cc` load(java.lang.Object)� S [fcng (21)W(cc:cl; n) = cn

super(cn:cf) = nsS; cc` load(ns)� S0S; cc` load(n)� S0 [fcng (22)

6.3 Linking
Since some classes are only needed for verification pur-

poses, the loading of a class does not automatically make
its methods executable to the JVM ([9,x5.1.2.]). In or-
der to invoke the methods of a class, the loaded class must
be linked. The linking phase involves byte-code verifica-
tion which in turn provokes the loading (but not linking)
of classes containing the definition of entities named in the
byte-code. We represent this verification process by an op-
erationverify on a class. Furthermore, linking a class into
the JVM automatically causes its superclass to be linked
in. S; cc` load(java.lang.Object)� S0W(cc:cl;java.lang.Object) = cnS0; cc` verify(cn)� S00S; cc` link(java.lang.Object)� S00 (23)S; cc` load(n)� S0cn = W(cc:cl; n)

super(cn:cf) = nsS0; cc` link(ns)� S00S00; cc` verify(cn)� S000S; cc` link(n)� S000 (24)

It should be noted that the operations can fail. The in-
ference rules here and in the following only specify the
treatment of errors implicitly; an error implies that no de-
duction is possible for a given operation.

The verification phase loads all classes referenced in the
code being linked using the class being verified as the cur-
rent class. It then type-checks the code based on the visi-
bility relations determined by the loaded classes.C = references(c:cf)S; c ` load�(C) � S0S0; cc` typecheck-class(c)S; cc` verify(c)� S0 (25)

whereload� is load lifted to sets of classes.
The functiontypecheck-classverifies each instruction

of a class usingtypecheckdefined below. Type checking
of JVM instruction is described in detail by Qian [12] and
is not the aim of this paper. We give a brief presentation
of the rules for type-checking two instructions that mod-
els method invocation and assignment (calledinvokevir-
tual andputfieldafter their JVM equivalents) in order to
demonstrate how visibility and loading interacts.

Type-checking of JVM instructions in [12] operates
with a simulated stackST of types mirroring the types of
the objects on the run-time stack. Invoking a methodm
defined in a classcm from the object on top of the run-time
stack, requires thatm is visible from the classc0 of that
object:

ST= c0 :: ST’S; cc` (c0;m) accessibleccS; cc;ST` typecheck(invokevirtual(m)) (26)

Similarly, the instructionputfield(cc; f) stores the object
on top of the stack in thef field of the object just below
the stack top, thus the type off must be a superclass of the
class on top of the simulated stack:

ST= ca :: cm :: ST’f member-ofcmfc = member-type(W(cc:cl; origin(f)):cf ; f)fc 2 Classca sub� W(cc:cl; fc)S; cc;ST` typecheck(putfield(f)) (27)

6.4 Semantics of JVM instructions
JVM machine instructions reference classes and their

fields and methods via theconstant poolof the current class
[9, Ch. 5]. Each class defines a constant pool whose en-
tries contain attributes of the entity referenced through that
entry. This indirect naming avoids the need for fully qual-
ified names to appear in the bytecode but is irrelevant for
our purposes. We shall instead work with an instruction set
where instruction carry the information from the constant
pool given as fully qualified names.

Instruction Argument type

checkcast class

instanceof class

anewarray class

multianewarray class

new class

getfield field

getstatic field

putfield field

putstatic field

invokeinterface interface method

invokespecial method

invokestatic method

invokevirtual method

Figure 1: Instructions causing name resolution

The JVM specification uses the termname resolution
for the process that from a reference in an instruction loads
and links the code necessary for the execution of the in-
struction. Whether the reference is to a classc or to a
method ofc the net effect is to linkc into the machine. In-
structions that involve name resolution, together with the
required action, are listed in Table 1. All other instructions
leave the state of loaded and linked classes unchanged.

The rule forinvokevirtualreads

origin(m) = nS; cc` link(n)� S0S; cc` invokevirtual(m)� S0 (28)

and all method-referencing instructions are defined like
this. Instructions with class references are treated simi-
larly.

7 A bug in the ClassLoader mechanism
V. Saraswat has recently reported a bug in the way in

which the JVM determines whether two classes are equiva-
lent [13]. This bug can be exploited to causetype confusion
between two classes with the well known consequences for
the security such as providing access toprivate vari-
ables from other classes [10]. Consider the following four
class filescfR1; cfR2; cfRR, andcfRT in figure 2, all of whose
superclass isObject.6 Assume furthermore that we have
two class loaderscl1 andcl2 satisfying

6To save space we will writeObject when we actually mean
java.lang.Object.

Class file :cfR1 Class file :cfR2
class R class R

private int i=1 public int i=1

Class file :cfRR Class file :cfRT
class RR class RT

R getR() private R r

return new R() void test()

RR rr=new RR()

r=rr.getR() (*)

Figure 2: Saraswats type confusion example

W(cl1; n) = 8><>: W(scl; n) if n 2 java.lang.*(cfR1; cl1) if n = R(cfRR; cl1) if n = RRW(cl2; n) = 8><>: W(cl1; n) if n = RR(cfR2; cl2) if n = R(cfRT; cl2) if n = RT
We recall that a loaded class consists of a class file and a
class loader. As an example we have(cfR2; cl2), denoting
the result of loading class filecfR2 with class loadercl2.

Informally, the problem can be explained as follows.
The value returned by the expressionrr.getR() in
the statement(�) will be an instance of the loaded class(cfR1; cl1) sinceRR was loaded bycl1 and resolution of
R in the classRR is done wrt.cl1. On the other hand,
theR appearing inRT will be loaded bycl2 and therefore
yield (cfR2; cl2). These two classes are not the same and
the assignment should fail. However, if only the names of
the classes are checked for equality then the assignment
is deemed correct, leading to a situation where the once
private field i of classR is now consideredpublic.
See the report by Saraswat [13] for an extensive discussion
of this problem.

In this section we show how this problem and its so-
lution can be become apparent by analysing the program
using our formalism. The following deduction shows how
the machine state evolves by linkingRT when the current
classcc has been loaded by class loadercl2 i.e., cc.cl= cl2.
We make the assumption that loading and linking the class
Object with the system class loaderscl does not affect
the state,i.e., that

If cc.cl = scl then

(S; cc` load(Object)� S andS; cc` link(Object)� S:

Let now the current class be loaded bycl2 i.e., thatcc:cl =
cl2. We can instantiate the rule defining linking as followsS; cc` load(RT)� S0W(cc:cl; RT) = (cfRT; cl2)

super(cfRT) = ObjectS0; cc` link(Object)� S0S0; cc` verify((cfRT; cl2))� S00S; cc` link(RT)� S00
and we aim at showing that settingS0 = S [f(cfRT; cl2)g
and S00 = S0 [f(cfRR; cl1); (cfR2; cl2)g
yields a provable instance.

The two premisses in the middle are immediately satis-
fied so we focus on the first and the last premiss. By the
rule for load,

cc:cl = cl2W(cc.cl; RT) = W(cl2; RT) = (cfRT; cl2)
super(cfRT) = ObjectS; cc` load(Object)� SS; cc` load(RT)� S [f(cfRT; cl2)g

Similarly, the verification of the body ofRT will cause the
loading of all classes referenced inRT:fRR; Rg = references(cfRT)S0; cc` load�(fRR; Rg)� S0 [f(cfRR; cl1); (cfR2; cl2)gS0; cc` verify((cfRT; cl2))� S0 [f(cfRR; cl1); (cfR2; cl2)g
The effect of loadingR andRR can be found by the follow-
ing deductions. Assume for the moment that classes are
loaded in the order they appear in the text. ThenS0; cc` load�(fRR; Rg)� S0 [f(cfRR; cl1); (cfR2; cl2)g
since W(cc.cl; RR) = W(cl2; RR) = (cfRR; cl1)

super(cfRR) = ObjectS0; cc` load(Object)� S0S0; cc` load(RR)� S0 [f(cfRR; cl1)g
and W(cc.cl; R) = W(cl2; R) = (cfR2; cl2)

super(cfR2) = ObjectS0 [f(cfRR; cl1)g; cc` load(Object) �S0 [f(cfRR; cl1)gS0 [f(cfRR; cl1)g; cc` load(R)� S0 [f(cfRR; cl1); (cfR2; cl2)g

Executing the code ofRT in stateS00; cc leads to executing
the instruction

invokevirtual((RR;getR()))
whose effect on the state of the machine can be determined
according to the rule from Section 6.4 defining this instruc-
tion:

origin(RR:getR()) = RRS00; cc` link(RR)� S00 [f(cfR1; cl1)gS00; cc` invokevirtual((RR;getR()))� S00 [f(cfR1; cl1)g
which leads to analysing the linking ofRR. The class loader
of the current class has already loadedRR; we omit the for-
mal proof that re-executingload(RR) in stateS00; cc does
not affect stateS00. However, the verification ofRR leads
to the loading of all classes mentioned in its methods.S00; cc` load(RR)� S00(cfRR; cl1) = W(cc.cl; RR)

super(cfRR) = ObjectS00; cc` link(Object)� S00S00; cc` verify((cfRR; cl1))� S00 [f(cfR1; cl1)g
since the verification ofRR satisfiesfRg = references(cfRR)S00 ` load((cfRR; cl1);R)� S00 [f(cfR1; cl1)gS00; cc` verify((cfRR; cl1))� S00 [f(cfR1; cl1)g
where the second premiss is deduced as follows:W(cl1; R) = (cfR1; cl1)

super(cfR1) = ObjectS00; cc` load(Object)� S00S00 ` load((cfRR; cl1);R)� S00 [f(cfR1; cl1)g
The state after invoking the methodgetR thus looks as
follows:S [f(cfRT; cl2); (cfRR; cl1); (cfR2; cl2); (cfR1; cl1)g
and the last two loaded classes satisfy

name((cfR2; cl2):cf) = name((cfR1; cl1):cf)
from which the type confusion arises. More precisely, the
verification should find an error as follows. The faulty
statement (marked with an asterisk in class filecfRT) is
implemented by a call toinvokevirtual with argument
RR.getR() followed by an assignment operationputfield
to RT.r. When type checking the latter instruction, the

simulated run-time stack will contain the class of the re-
sult of RR.getR() (i.e., (cfR1; cl1)) on top of the class
of the invoking object (i.e., (cfRT; cl2)), and the following
deduction would be required to hold.

ST= (cfR1; cl1) :: (cfRT; cl2) :: ST’r = (RT; r)r member-of(cfRT; cl2)rc = member-type(W(cc:cl; origin(r)):cf ; r)= member-type(W(cl2; RT):cf ; r)= member-type((cfRT; cl2):cf ; r) = Rrc 2 Class(cfR1; cl1) sub� W(cc:cl; R)= W(cl2; R)= (cfR2; cl2)S; cc;ST` typecheck(putfield((RT; r)))
What has become apparent from the formalisation
is that this deduction is not valid: the predicate(cfR1; cl1) sub� (cfR2; cl2) does not hold because the class
loaders are different. The error committed by the JVM is to
implement the sub� relation by using only the name equiv-
alence mentioned above without checking that the class
loaders are the same.

8 Related work and avenues for further re-
search

The linking process has not received much attention
from the semantics community so far. Its importance has
been recognised recently by Cardelli [2] who proposes a
formalisation of linking as a process of combining program
fragments. The main goal in [2] is to provide a formal basis
for the design of programming languages and module sys-
tems and it considers only static linking. A formal study
of dynamic linking and its interaction with static typing
is reported by Dean [3]. The paper presents a model of
dynamic linking which is closely related to Java and pro-
poses a restriction on the dynamic linking operation in or-
der to ensure its soundness with respect to the static type
checking. The proof has been carried out in PVS and Dean
provides only a sketch of its structure. This restriction on
dynamic loading imposes that the (class types) context is
monotonically increasing (a new context must always be
a consistent extension of the previous one). The practi-
cal consequence for implementors is that no class defini-
tion should be loaded more than once for each class loader,
which is also required and implemented in the lastest ver-
sions of JVM. In contrast to this work, we detail the rôle of
the class loader identity in the relationship between types
and classes and the interaction between dynamic loading
and visibility rules rather than static typing.

The formalisations of the semantics of Java published
so far deal exclusively with either the type system [4, 14]
of the compiler or the reduction rules of the virtual ma-
chine [1, 12]. Drossopoulou and Eisenbach [4] presents
a formalisation of the type system of a substantial sub-
set of Java (including arrays, dynamic method binding,
object creation, exception handling, . . .). The type in-
ference system annotates Java programs with types and
the operational semantics of annotated programs is spec-
ified in terms of a rewrite system defining a relation be-
tween configurations (tuples of terms and states). A sub-
ject reduction property is then established expressing the
fact that well-typed programs rewrite either to an excep-
tion or to another well-typed term of the same type (up to
the subclass/subinterface relationship). This shows a form
of soundness of the type system for this subset of Java.
A variation of this formalisation has been expressed and
mechanically verified by Syme using a higher-order logic
proof system calledDeclare[14]. The formalisation of the
type system of Java is extremely useful both for a better un-
derstanding of the language and for discovering mistakes
or omissions in the informal specifications. The cited work
however does not consider dynamic loading and visibility
rules (modifiers) which play a significant role in the secu-
rity of Java. These aspects are precisely the core of our
contribution. On the other hand, we do not deal with type
checking ourselves, considering it an orthogonal issue. So,
the results presented in this paper are complementary to
[4, 14]. This complementarity goes in both directions: visi-
bility rules should be taken into account within type check-
ing and a form of type checking should be included in the
“load time” verifications of the abstract machine. This in-
tegration is a natural avenue for further work. Note how-
ever that the formalisation proposed by Drossopoulou and
Eisenbach would need to be reformulated to be used in
this context because it applies to source code whereas we
need verification rules of the byte code. To the best of our
knowledge, the only attempt at defining byte code verifi-
cations formally has been carried out by Qian [12] who
includes a proof of soundness of a bytecode verifier with
respect to a simplified specification of the Java virtual ma-
chine. However, as opposed to the work described here,
Qian starts with the “closed world assumption” (all classes
have been previously loaded into the system by a single
class loader) and does not take visibility rules into account.

Bertelsen [1] presents a very precise definition of the
virtual machine based on the informal specification in [9].
In addition to the heap and the environment, the state of
the machine includes a stack of frames, each one corre-
sponding to a method invocation. A frame consists of a
program counter, an operand stack, a set of local variables
and a current method identifier. The report by Bertelsen

contains a comprehensive definition of the instruction set
of the Java Virtual Machine (only some instructions can-
not be described precisely because they require concrete
representations of the state). This specification was pre-
cise enough to reveal a number of ambiguities and errors
in [9]. Because of its low level and exhaustive nature, this
specification is in fact close to a formal reference manual
and it is not evident whether it can easily be exploited to
support formal reasoning on Java programs. In contrast to
Bertelsen, we have focussed here on one specific aspect
of the semantics (the visibility rules, their use in the vir-
tual machine and their dynamic evolution through dynamic
loading) in order to highlight the choices made in the spec-
ification of the Java language and their impact on security.

Further work is still needed to relate our inference sys-
tems to that of Bertelsen. We believe however that the
work described here suggests another, more promising, ap-
proach: rather than providing the full semantics of a com-
plex programming language from scratch, it would be more
tractable (and enlightening) to define different views of the
semantics and then show their integration and consistentcy.
This notion of view is thus close to thefacetsin Action Se-
mantics7 [11]. It should be clear that all the contributions
reviewed here (except [1] which aims at comprehensive-
ness) focus on complementary aspects and shed some light
on the language. Determining what the most interesting
views of the semantics should be and how they interfere is
certainly one major avenue for future research in this area.

Another important extension of the existing results is
the formalisation of specific security policies for Java ap-
plications [5, 6, 7] and the study of the impact of the safety
properties studied so far on security issues. The soundness
of the type system and its interaction with dynamic loading
is definitely a prerequisite to enforce security (because type
errors can be exploited to breach security rules) but secu-
rity goes beyond mere type checking. What we would like
to ensure ultimately is confidentiality and integrity proper-
ties. A short review of existing works in this direction can
be found in [15].

References
[1] P. Bertelsen. Semantics of Java byte code. Technical report,

Department of Information Technology, Technical Univer-
sity of Denmark, March 1997.

[2] L. Cardelli. Program fragments, linking and modulariza-
tion. InProc. of 24th ACM Symposium on Principles of Pro-
gramming Languages, pages 266–277. ACM Press, 1997.

7The motivations for facets in Action Semantics are very muchalong
the lines of the above discussion (tackling the complexity of the semantics
of real programming language and providing a better insighton the main
design choices through a separation of concerns) but they represent inde-
pendent kinds of information (like functionality, communications, decla-
rations).

[3] D. Dean. The security of static typing with dynamic linking.
In Proc. of 4th ACM Conf. on Computer and Communica-
tions Security, pages 18–27. ACM Press, 1997.

[4] S. Drossopoulou and S. Eisenbach. Java is type safe – prob-
ably. In11th European Conference on Object Oriented Pro-
gramming, June 1997.

[5] L. Gong. Going beyond the sandbox: An overview of the
new security architecture in the Java development kit 1.2. In
Proc. of USENIX Symposium on Internet Technologies and
Systems, December 1997.

[6] L. Gong. Java security: Present and near future.IEEE Mi-
cro, May-June:14–19, 1997.

[7] L. Gong. New security architectural directions for Java. In
Proc. of IEEE COMPCON, pages 97–102, 1997.

[8] J. Gosling, B. Joy, and G. Steele.The Java Language Spec-
ification. Addison-Wesley, 1996.

[9] T. Lindholm and F. Yelling.The Java Virtual Machine Spec-
ification. Addison-Wesley, 1997.

[10] G. McGraw and E. Felten.Java Security: hostile applets,
holes and antidotes. J. Wiley & Sons, 1997.

[11] P. Mosses. Action Semantics, volume 26 ofCambridge
Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1992.

[12] Z. Qian. A formal specification of Java virtual machine in-
structions. Technical report, Universität Bremen, 1997.

[13] V. Saraswat. Java is not type-safe. Technical report, AT&T
Research, 1997.http://www.research.att.com/�vj/bug.html.

[14] D. Syme. Proving Java type soundness. Technical Report
427, Cambridge University, June 1997.

[15] T. Thorn. Programming Languages for Mobile Code.ACM
Computing Surveys, September 1997.

