Security and Dynamic Class Loading in Java: A Formaliséation

T. Jensen

D. Le Métayer

T. Thorn

IRISA/CNRS/INRIA!
Campus de Beaulieu
F-35042 Rennes Cedex, France

Email: {jensen,lemetayer,thof@irisa.fr

Abstract

We give a formal specification of the dynamic loading of
classes in the Java Virtual Machine (JVM) and of the visi-
bility of members of the loaded classes. This specification
is obtained by identifying the part of the run-time state of
the JVM that is relevant for dynamic loading and visibil-
ity and consists of a set of inference rules defining abstract
operations for loading, linking and verification of classes.
The formalisation of visibility includes an axiomatisation
of the rules for membership of a class under inheritance,

posed to be a “type safe” language. This claim is still

a matter of debate but even if this goal is not quite
achieved yet, it is reasonable to believe that the fun-
damental choices underlying the language are suffi-
ciently sound to make it possible to fix the remaining

problems in the near future.

However, as shown by the various discussions triggered
by the claims about the security of Java, the language
still involves a number of innovations and subtleties which

and of accessibility of a member in the presence of accessi-Make its semantics far from obvious. The most striking

bility modifiers such apri vat e andpr ot ect ed. The
contribution of the formalisation is twofold. First, it pro-
vides a clear and concise description of the loading pro-
cess and the rules for member visibility compared to the
informal definitions of the Java language and the JVM.
Second, it is sufficiently simple to allow calculations of the
effects of load operations in the JVM.

1 Introduction

Security is one of the most important issues concerning
the Java language, at least in the context of its application
to the programming of mobile code. Java involves a unique
combination of factors which makes the study of security
issues especially challenging:

¢ The philosophy of the designers of the Java environ-
ment is that security mechanisms are language-based
Developers are encouraged to write code exclusively
in Java, which implies that all security controls can be
achieved through the Java abstract machine.

e Java was explicitly designed to be a small language
including only well-understood features. Java is sup-

*Published in the Proceedings of the 1998 IEEE InternatiQuaifer-
ence on Computer Languages, Chicago, lllinois, May 14-86881p.4-
15. Revised: Mars 12, 1999.

tPart of this work has been done in the context of Dyade (R&Btjoi
venture between Bull and Inria).

features of the language in this respect are tied to the dy-
namic loading of classes:

¢ \erification of type soundness is carried out at four
different times in Java: at compile time, at load time,
at link time and at run time. The first one applies to
source code relatively to a static environment, while
the other ones apply to class files, the concrete repre-
sentation of a compiled class definition, relatively to
a set of dynamically loaded classes.

The notion of class loader plays a critical role in
the security of Java. Each class is associated with a
specific class loader which corresponds to a specific
name space in the virtual machine. The Java secu-
rity model relies on name spaces to ensure that an
untrusted applet cannot interfere with other Java pro-
grams [7].

Another important aspect of the security of the language is
the visibility modifiers flefault, public, protected, private
which are attached to classes and members in order to re-
strict the access to these. For instance, attributes with a
defaultvisibility are fully accessible only within their def-
inition package.

This combination of features inevitably leads to com-
plexities and uncertainties which can have unfortunate con-
sequences in terms of security. This is manifested by the

fact that apparently harmless programs can lead to unex-
pected security flaws [13]. Furthermore some features of

the informal specification of the language and the virtual
machine are subject to different interpretations.

This situation is clearly not acceptable for a language
in which security is such an important issue and we be-
lieve that the only way to tackle these problems is through
an appropriate formalisation. But a formalisation is use-
ful only if it really helps reasoning about security prop-
erties. It should be defined at the right level of abstrac-

tion, which means precise enough to include all the secu-

rity critical features of the language (e.g. visibility rules,

and abstract enough to avoid all the irrelevant details
(w.r.t. security) of the complete semantics.

We abstract the state of the virtual machine into a set of
relations describing the hierarchy of classes and members
with their visibility rules. We do not consider computations
on basic values here since they do not have any impact on
the abstract state (and the security issues). As a conse-
guence, we do not describe type checking either, consider-
ing it a complementary issue which can be tacldegl, by
using the system presented by Qian in [12]. Then we show
that this formalisation allows us to expose in a straightfor-

dynamic loading and class loaders) and abstract enough toVard way a security problem that was discovered empiri-
focus on the significant issues and avoid all the irrelevant cally in [13].

details (w.r.t. security) of the complete semantics.

It is assumed that the reader is familiar with Java and its

Several formalisations of Java have been proposed inte€rminology concerning classes, interfaces, and visibility
the literature. Each one has its own merits and sheds somenodifiers. The next section summarises our notation for

light on the language, but we believe that none of them
really satisfies the above criteria. At the language level,

Drossopoulou and Eisenbach [4] have proposed an oper-
ational semantics and a type system for core Java, and
proved that the type system is sound with respect to this

semantics. However, this description does not deal with
dynamic class loading at all. At the virtual machine level,
thetour de forceformalisation of the Java virtual machine

these entities.

2 Syntax

Below we formalise the concepts from Java programs
relevant to our point of view. These are names (of pack-
ages, classes, interfaces, fields, and methods), relations
(subclassing and implements), types, and access modifiers.
All these concepts together lead to the definition ofass

by Bertelsen [1] seems too detailed to be used for practical file. The class file is the representation of a compiled Java

calculations.

In this paper, we propose a formalisation of the visibil-
ity rules in the hierarchy of classes loaded into a virtual
machine and their evolution through dynamic loading and
linking. The formalisation is based on the informal specifi-
cation of the visibility rules in the Java language definition
[8]. We relate each of our rules to the explanations taken
from [8], explaining our interpretation when appropriate.
The formalisation of dynamic class loading is based on [9].
The two main contributions of the formalisation presented
in this paper are the following:

¢ It provides a clear and concise description of the load-
ing process and the rules for member visibility com-

pared to the definitions of the Java language and the

Java virtual machine (JVM). The informal definition
of these rules and their interaction are quite complex,
and the first benefit of the formalisation is a better un-
derstanding of those issues.

¢ It is sufficiently simple to allow calculations of the
effects of load operations in the JVM. Indeed, we
believe this specification to be at the right level of
abstraction to help reasoning about security proper-

class that can be loaded into the JVM.

2.1 Package, class, and interface names

Each class belongs to a package which defines the limits
of visibility of the protected members.

PackageName:= Identifier | PackageName’ Identifier

Different classes and interfaces may appear with the
same name in different packages. To disambiguate them,
we use theirfully qualified namesi.e., their name paired
with the package of their definition. The f8lassis the
set of valid class and interface names.

Class ::= PackageName' Identifier

Classes and interfaces declare a humber of fields and
methods. The namespaces of the two are disjoint. The
fields of a class are class variables, instance variables, and
constants, while only constants are allowed as interface
fields. For our purpose, we do not need to distinguish be-
tween the different kinds of fields and just represent them
all with Field, the set of field names paired with the class
of their definition. As Java allows overloaded methods,
the type of the arguments is needed to distinguish between

ties in Java because it is precise enough to include different methods with the same name, thisthodis the
the security-critical features of the language (such as set of methods (a pair of method name and argument signa-

visibility rules, dynamic loading and class loaders)

tures) paired with the class (or interface) of their definition.

We refer to the disjoint uniohof these sets aMlember
The sefTypeof argument types is defined in Section 2.3.

FieldDesc = Identifier
MethodDesc = Identifier x Typ€
MemberDesc = FieldDescw MethodDesc
Field = Classx FieldDesc
Method = Classx MethodDesc
Member = Field w Method= Classx MemberDesc

To ease the manipulation of the names frGfassand
Member we define three selectopsickageorigin, andde-
scriptor. The selectopackagegives the package name part
of a class or interface namerigin the class or interface in
which the member is declared, addscriptorthe descrip-
tor part of a member name:

package : Class— PackageName
origin Member— Class
descriptor : Member— MemberDesc

Since constructors play no particular réle in this paper,
we follow the operational reality and model the constructor
of a class as a special methedni t >, distinct from all

package as itself. Access ofpa ot ect ed member is
slightly more complicated: access is generally granted in
subclasses and in classes from the same package as the
member. For interface members the visibility is always
public. The precise semantics of modifiers in defined in
Sections 4-5.
2.3 Types

The set of basic types such asoid, int and
bool ean are represented by the #aseType Together
all classes, interfaces, and arrays are known as reference
types andRefTypés defined as the smallest set satisfying

ClassC RefType
Vt € RefTypeJ BaseType t[] € RefType

where an array with elements of typés written¢[]. The

set of expressible types is the union of base types and ref-
erence types:

Type= BaseTypeu RefType

2.4 Class files
The class file is a concrete representation of a compiled

Java class and is the unit for linking. We model the class
file with an abstract type;lassFilewith corresponding op-

user definable methods. The correspondence is simple: ~ €rations:
new T(...) s To<inits(...) name : ClassFile— Class
new super(...) — super.<init>(...) super : ClassFile— Class
this(...) — this.<init>(...) implement : ClassFile— P(Clasg
member : ClassFile— P(Membej

2.2 Access modifiers
Classes, interfaces, and class members can have thei

visibility changed through the use of a maodifier from
Modifier.

Modifier = {publ i c,pr ot ect ed,def aul t ,pri vat e}

ClassFilex Member— Type
ClassFilex Member— Modifier
ClassFile— Modifier
ClassFile— P(Clasg

member-type :
rmember-modifier :
class-modifier :
references :

where

The modifier only gives docal constraint. The over-
all access is determined by the combination of the restric-
tions on the package, the class, and the member itself. For
classes and interfaces, ontwbl i ¢ anddef aul t ap-
ply. Assuming no other restrictions apppubl i ¢ classes
can be accessed everywhere, whiledieé aul t visibility
only grants access to classes from its package.

For memberspubl i ¢ denotes that access to the entity
is unconstrained. Ar i vat e member is only accessible
within its class of definition. Thelef aul t accessibil-
ity of a member is restricted to classes within the same

1We use disjoint union in order to preserve the informatiorethler a
member is a field or a method.

2There is nadef aul t keyword in Java, but the absense of a modifier
implies it. To simplify, we assume that it is explicitly give

¢ namegives the fully qualified name of the class im-

plemented by the class file,
supergives the name of the super class,

implementgives the set (possibly empty) of imple-
mented interfaces,

membergives the set of members declared for the
class,

e member-typ@gives the type (or return type for meth-

ods) of members,

e member-modifiegives the declared modifier of mem-

bers, and

¢ class-modifielgives the declared access modifier for that for a given class loadet (itself a loaded class) and a
the class itself. class name: returns a loaded class,. The function/V

: satisfies:
¢ referencesgives the set of class names referenced

from the class file, including those used by methods. vel € LoadedClass: € Class.

The functionanember-typ@andmember-modifieare only W(cl,n) = ¢ = naméc.cf) =n
defined on members from the class file and are thus par-
tial functions, denoted by». Similarly, superis a partial Notice that the class loader attachedg(cl,n) may be

function since the classava. | ang. Qbj ect does not different fromcl, sincecl may choose to delegate the load-
have a super class. It follows from the definition that for a ing to another class loadesf(the example in Section 7).
given class filef, The loading of a classrecursively triggers the loading
of the superclass ef thus after loading with class loader
cl, all classes betweeanand the root of the class tree have
3 Dynamic loading beelj loaded, bu_t not necessarily &y If cl delegates the
loading of certain classes to another class loatlethen

Vm € membefcf) . origin(m) = namécf)

Classes and interfaces are loaded into the JVM dy-
. ; o some of the superclasses could be loadedbyThe load-
namically when they are either needed or explicitly de- ina process will be formalised in Section 6.2
manded. The loading of classes is done by the methods ap) T
| oadd ass of thed assLoader classes. These meth- 3-1 Subclass anq |mpI.ement.s relation
ods accept as arguments a fully qualified name and deter- A loaded c_:Iass is an immediate subclass of another
mine where to search for a class file containing a class of loaded class iff they are loaded by the same class loader

that name. The return value is an object of cl@ksiss. and the declared super class of the former matches the
There are two noticeable aspects about the relationship be-name of the latter. We define the following relations rel-
tween class loaders and classes: ative to a setS of loaded classes since this will later be

. . . our representation of the state of the virtual machine (Sec-
» Toevery class is associated the class loader object that,; | | 6)

loaded the class. It is this class loader that is invoked

when the code in the class necessitates another class sub C LoadedClass LoadedClass
to be loaded.
e Once a class loader has loaded a class with name cc €S
and returnedd ass objecto, all subsequent calls to ¢ = W(e.cl, supefc.cf))
that class loader witim as argument will return the SFecsubd 1)

same objecb.®

) . . The subclass relation stids the reflexive, transitive clo-
The first aspect means that a loaded class is identified bysure of sub

specifying its class file and the class loader that loaded it. -
We defineClassLoademas an abstract set of class loaders Skesub c (2)
with the system class loadsg|, as a distingushed element.

/ /!
The set of loaded classes is the set produ€lagsLoader ¢,c,c" €5 ,
andClassFile St ¢ subc
. Stk sub ¢
LoadedClass= ClassLoaderx ClassFile
Stesub ¢ (3)

We use the notation.cf andc.cl to denote the class file
and class loader of a loaded class

The user is free to program his own class loader whose
behaviour can be completely different from that of the sys-
tem class loader, as long as it respects the second require-
ment above. The behaviour of a class loader can thus be
modelled by a function

Likewise we lift the notion that a class implements
an interface to a relation between two instances of
LoadedClasgwhere the latter represents an interface):

impl C LoadedClassx LoadedClass

c,i €S
W : LoadedClassx Class— LoadedClass naméi.cf) € implementc.cf)
S3Although 2.16.2 in the JVM Specification [9] seems to indicsdme- i = W(c.cl,naméi.cf))

thing else. The newer 1.1 implementation follows this rblg,we haven't - -
been able to locate any documentation confirming this. Sk cimpl i (4)

4 Membership and inheritance We formulate this with the ‘inheritable-by’ relation be-
The concepts of membership and inheritance are not ex-tween a membei: and a loaded class The class name

plicit in the class files, but can be inferred from the syntac- origin(m) associated withn is first translated into a loaded

tic information outlined in Section 2. Below we formalize classc,,, and then the modifier associated within the

such an inference system for the membership and inheri- class file ofc,, is determined:

tance based on their informal description in the Java spec-

ificatior’’. In order to integrate this with the semantics of inheritable-by C Memberx LoadedClass

dynamic loading (Section 6) every rule is relative to a set o

of loaded classe$ and a current classc € LoadedClass cm = W(c.cl, origin(m))

4.1 Members member-modifi€r.,,,.cf, m) € {pr ot ect ed,public}
Throughoutthis section;references refer to [8}6.4.2 Sk csuld ¢p,

states t_he conditions for class membership (which are re- S, ccF m inheritable-by:

peated ir§8.2): @
e Members inherited from its direct superclag8.(.3) cm = W(e.cl, origin(m))

¢ Members inherited from any direct superinterfaces member-modifigr.,, .cf, m) = def aul t

(68.1.4) S F esub ¢,
packagénaméc.cf)) = packagéorigin(m))

e Members declared in the body of the clag.1.5) S coF mnherableb ®)
, mi i -bye

§6.4.3 states the conditions for interfaces membership:))]
Other inheritance rules for members appear in two places

e Members inherited from any direct superinterfaces in the specification§8.3 deals with class fields and states:

9.1.3
¥) . . “A class inherits from its direct superclass all the
* Members declared in the body of the interfage.(.4) fields of the superclass that are both accessible to
In the following, we combine these rules. We useto code in the class and not hidden by a declaration
denote a member froflemberand ¢ to denote a loaded in the class.”
class, represented bylmadedClas&nd define ‘member-

of’ as a relation betweem andc. A field is hiddenby declaring another field with the same

name in a subclass;8.4.6 deals with class methods and

member-of C Memberx LoadedClass states:
m € membefc.cf) “A class inherits from its direct superclass all the
S, cck m member-of: (5) methods of the superclass that are accessible to
S, cck cinheritsm code in the class and are neither overridden nor
S ccF m member-of: (6) hidden by a declaration in the class.”
The ‘inherits’ relation is defined in the next section. A class (resp., instance) method is said tdlokelen(resp.,
4.2 Inheritance overridden if a subclass declares a class (resp., instance)

Following [8] the rules for inheritance are divided into method with the same name and signatame the former
two parts. The first part gives an over-estimation, which is is visible in that subclass. Again, analogous inheritance
then constrained by the second. A general, but not suffi- rules are stated for interfaces§8.2. We express the con-
cient, condition for inheritance is given §§.2: straint imposed by “neither overridden nor hidden” with

.) the relation ‘undeclared-inC Memberx LoadedClass
Members of a class that are declared private are

not inherited by subclasses of that class. Only Vm' € membefc.cf) . descripto(m) # descriptofm’)
members of a class that are declared protected or
public are inherited by subclasses declared in a
package other than the one in which the class is
declared.”

S, cck m undeclared-in:
)
The relations ‘inherits’ between a memberand a loaded
classc is defined based on the conditions above. Notice

4The definition is dependent on the concept of package acdeish w that the notion of accessibility here is the one given by
in itself is system-dependent (file access etc). We do noehibis aspect ‘inheritabl s h hat foll . g
and assume that an occurence of a loaded class in one of #sebelbw inheritab e'by and not the one that follows in Section 5.1.
implies that the class loader could obtain access to theagackf the

class. inheritsC LoadedClassx Member

S+ ¢ subd’

S, cck m member-of’
S, cct m inheritable-bye
S, cck m undeclared-in:

S, cct cinheritsm (10)
S Fcimpl¢
S, cck m member-of’
S, cck m undeclared-ir

S,cct ¢ inheritsm (11)

Interface members are always public, so we leave out the
‘inheritable-by’ condition for interfaces.

5 Accessibility

Only member modifiers have been used to define the
‘member-of’ and ‘inherits’ relations. We show in this sec-
tion how class and interface modifiers influence the acces-
sibility of a member of one class from another class. This
is formalised by the relation ‘accessible’ defined below.

accessibleC LoadedClasx Member

5.1 Class and interface accessibility

These rules determine when a class (or interfacis)
accessible by methods within the current class§6.6.1
states:

“If a class or interface type is declared public,
then it may be accessed by any Java code that can
access the package in which it is declared. If a
class orinterface type is not declared public, then
it may be accessed only from within the package
in which it is declared.”

The accessibility of packages is dependent on the class

loader. As for the rules for membership (see footnote at the

beginning of Section 4), the rules suppose that all packages

needed could be accessed.
type-accC LoadedClass

class-modifiefc.cf) = publ i c

S,ccl ctype-acc (12)
class-modifiefc.cf) = def aul t
packagénaméc.cf)) = packagénamécc.cf))
S,cch ctype-acc (13)

5.2 Member accessibility

The ‘accessible’ relation determines the accessibility of
a membern of a class: from the current class. The mem-
berm

¢ is defined in the class namexdigin(m), correspond-
ing to the loaded clasg/(cc.cl, origin(m)) under the
current clasgc,

¢ belongs to an objeet, which is an instance of class
and

e is invoked in an instruction appearing in a method of
the current class.

The specification of the Java languaged®.6.1] states:

“A member (field or method) of a reference type
or a constructor is accessible only if the type is
accessible and the member or constructor is de-
clared to permit access.”

In particular, since classes and interfaces have their own
accessibility modifiers, it is necessary to check whether the
modifier allows access from the current class. However, it
seems that this check is not performed in some implemen-
tations of the virtual machine; thus, if we want to model
such machine behaviour, the cheektype-acc” should be
left out of ‘accessible’ defined below.

accessible” LoadedClassx Member

S, cck m member-of:
S, cck ctype-acc
S,cck (¢, m) permit-acc

S, cck (¢,m) accessible (14)

The modifier of membemn is found in the class file
W(cc.cl, origin(m)).cf. The rule ‘permit-acc’ details the
extra conditions determined by the declared access modi-
fication. The case for protected members is treated sepa-
rately below.

permit-acc C LoadedClassk Member

member-modifi€dV(cc.cl, origin(m)).cf,m) = publ i ¢

S,cct (¢, m) permit-acc
(15)

member-modifigdV(cc.cl, origin(m)).cf, m) = pr ot ect ed
packagénameécc.cf)) = packagéorigin(m))

S,cct (¢, m) permit-acc
(16)

member-modifigdV(cc.cl, origin(m)).cf, m) = pr ot ect ed
S F ccsubl W(cce.cl, origin(m))
S,cct (¢, m) prot-acc

S,cck (¢, m) permit-acc
(17)

member-modifigdV (cc.cl, origin(m)).cf, m) = def aul t
packagénamécc.cf)) = packagéorigin(m))

S,cck (¢, m) permit-acc
(18)

member-modifiédV (cc.cl, origin(m)).cf,m) = pri vat e
W(cc.cl, origin(m)) = cc

S,cck (¢, m) permit-acc
(19)
For protected member$6.6.2 specifies:

“A protected member of an object may be ac-
cessed from outside the package in which it is
declared only by code that is responsible for the
implementation of that object.”

descriptofm) Z<init> St csub cc

6.2 Loading

Some JVM instructions refer to names of classes, in-
terfaces, methods or fields. Their execution provokes the
loading of classes containing the definition of these names
if these have not already been loaded. For example, execut-
ing the JVM instruction for calling a method requires the
loading of the class in which the method is defined. Fur-
thermore, loading of a class always entails the loading of
its superclass; by recursion, the net result is that all classes
between the class initially to be loaded and the top of the
class hierarchy ava. | ang. Qbj ect are loaded. This
loading is performed by the class loader associated with
the current class (cf. Section 3). The following rule for-
malises the loading process.

W(cc.cl,j ava. | ang. Obj ect) = ¢,
S,cck load(j ava. | ang. Obj ect) > SU{c,} (21)

W(cecln) =c,
supefc,.cf) = ng
S,cct load(ng) > S’

S,cctk (¢, m) prot-acc 20

(em) B (20) S,cck load(n) > S’ U{c,} (22)
For protected access between different packages we thus6 3 Linkin
have the requirement that the three classes involved form ™ 9

the hierarchy
¢ subi ccsub’ W(cc.cl, origin(m)).

6 The Java virtual machine
6.1 The JVM state

The part of the state of a JVM that is relevant for the op-
erations below is given by theurrent class c¢hat caused
their invocation and the set of classes loaded into the ma-
chine.

S € State= P(LoadedClasp

The state determines a set of semantic relations on inher-
itance, accessibility and visibility of names in classes, as
explained in the preceding sections. The purpose of this
section is to describe how the instructions of the virtual ma-
chine [9] transform this state. This transformation is itself
dependent on the visibility relation determined by the cur-
rent state of the machine. In the following, we formalise
two abstract operationsad andlink that model the be-
haviour of the JVM when loading and linking classes. The
operationdoad or link receive as arguments the class

to be loaded or linked. We define a relation of the form
S,cck op(n) > S’, meaning that execution of operatiop

in stateS leads to staté&’.>

5The current class;c, is unchanged after execution. It is straightfor-
ward to turn this into a transition relation of forap(n):(S,cc)— (S’,cc)
but for expository reasons we have chosen the other format.

Since some classes are only needed for verification pur-
poses, the loading of a class does not automatically make
its methods executable to the JVM ([§5.1.2.]). In or-
der to invoke the methods of a class, the loaded class must
belinked The linking phase involves byte-code verifica-
tion which in turn provokes the loading (but not linking)
of classes containing the definition of entities named in the
byte-code. We represent this verification process by an op-
erationverify on a class. Furthermore, linking a class into
the JVM automatically causes its superclass to be linked

in.
S,cct load(j ava. | ang. Obj ect) > S’
W(cc.cl,j ava. | ang. Obj ect) = ¢,
S’ cct verify(c,) > S”
S,cck link(j ava. | ang. Obj ect) > S”

(23)

S,cct load(n) > S’
¢, = W(cccl,n)
supefc,.cf) = n,
S’ cck link(ng) > S”
S" cct verify(c,) > S
S, cck link(n) > 8™ (24)
It should be noted that the operations can fail. The in-
ference rules here and in the following only specify the

treatment of errors implicitly; an error implies that no de-
duction is possible for a given operation.

The verification phase loads all classes referenced in the

code being linked using the class being verified as the cur-

rent class. It then type-checks the code based on the visi-

bility relations determined by the loaded classes.

C = referencege.cf)

S,ck load (C) > S’

S', cck typecheck-clags)
S, cct verify(c) > S’

(25)

whereload” is load lifted to sets of classes.

The functiontypecheck-classerifies each instruction
of a class usingypechecldefined below. Type checking
of JVM instruction is described in detail by Qian [12] and
is not the aim of this paper. We give a brief presentation
of the rules for type-checking two instructions that mod-
els method invocation and assignment (calieebkevir-
tual and putfield after their JVM equivalents) in order to
demonstrate how visibility and loading interacts.

Type-checking of JVM instructions in [12] operates
with a simulated staclT of types mirroring the types of
the objects on the run-time stack. Invoking a method
defined in a class,, from the object on top of the run-time
stack, requires that: is visible from the clasg, of that
object:

ST=1¢y:: ST
S,cck (co, m) accessiblec

S, cc, ST typechecknvokevirtua(m)) (26)

Similarly, the instructiomputfieldcc, f) stores the object
on top of the stack in th¢ field of the object just below
the stack top, thus the type $fmust be a superclass of the
class on top of the simulated stack:

ST=cq ¢ i
f member-ot:,,

fe = member-typ@/V(cc.cl, origin(f)).cf, f)
fc € Class
¢, Sub” W(ccecl, f.)

S, cc, ST+ typecheciputfield f))

ST

(27)

6.4 Semantics of JVM instructions
JVM machine instructions reference classes and their
fields and methods via tlmnstant poobf the current class

Instruction Argument type
checkcast class
i nst anceof class
anewar r ay class
mul ti anewar r ay class
new class
getfield field
getstatic field
putfield field
putstatic field
i nvokei nt erface | interface method

i nvokespeci al method

i nvokestatic method

i nvokevi rt ual method

Figure 1: Instructions causing name resolution

The JVM specification uses the temmame resolution
for the process that from a reference in an instruction loads
and links the code necessary for the execution of the in-
struction. Whether the reference is to a claser to a
method ofc the net effect is to link: into the machine. In-
structions that involve name resolution, together with the
required action, are listed in Table 1. All other instructions
leave the state of loaded and linked classes unchanged.

The rule forinvokevirtualreads

origin(m) =n
S, cct link(n) > S’
S, cct invokevirtua{m) > S’

(28)

and all method-referencing instructions are defined like
this. Instructions with class references are treated simi-
larly.

7 A bug in the ClassLoader mechanism

V. Saraswat has recently reported a bug in the way in
which the JVM determines whether two classes are equiva-
lent [13]. This bug can be exploited to caugpe confusion
between two classes with the well known consequences for
the security such as providing accesspta vat e vari-
ables from other classes [10]. Consider the following four

[9, Ch. 5]. Each class defines a constant pool whose en-|55 filexf,,, Cfay, Cf g, andcty, in figure 2, all of whose

tries contain attributes of the entity referenced through that
entry. This indirect naming avoids the need for fully qual-
ified names to appear in the bytecode but is irrelevant for
our purposes. We shall instead work with an instruction set
where instruction carry the information from the constant
pool given as fully qualified names.

superclass i€bj ect .6 Assume furthermore that we have
two class loadersl; andcl, satisfying

6To save space we will writecCbj ect when we actually mean
j ava. | ang. bj ect .

Let now the current class be loadedddy i.e., thatcc.cl =

Class file :cf,, Class file :cf, cly. We can instantiate the rule defining linking as follows
class R class R S, cck load(RT) > S
private int i=1 public int i=1 W(ce.cl, RT) = (cfyy, Cl)
supelcfy;) = Object
Class file :cfyy Class file :cfy, S',cck link(Object) > S’
class RR class RT S',cck verify((Cfyy, cly)) & S”
R getR() private Rr S, ccF INk(RT) > 57
return new R() voi d test())) _
RR rr=new RR() and we aim at showing that setting
r=rr.getR() (¥ S" = SuU{(cfg,cl)}

Figure 2: Saraswats type confusion example and

S" = S5"U {(cfgg, ch), (cfyy, Cla)}

yields a provable instance.
The two premisses in the middle are immediately satis-

W(scln) if n €java.l ang. * fied so we focus on the first and the last premiss. By the
Ww(ch,n) = (Cfyy,Ch) if =R rule forload,

(cfer.Cli) ifn=RR cc.el = cly

W(ch,n) ifn=RR W(ce.cLRT) = W(cly, RT) = (cfyy, lp)
w(cly,n) = (Cfgo, Cl2) ifn=R supexcfz;) = Object

(cfar, Cly) if m = RT S,cct load(Object) > S

.) ,cch 1 RT f...cl
We recall that a loaded class consists of a class file and a S;cct load(RT) > S U {(Cfar, clz)}
class loader. As an example we hgeg,,, cl,), denoting Similarly, the verification of the body dRT will cause the

the result of loading class filef, with class loadecls. loading of all classes referencedm:
Informally, the problem can be explained as follows.
The value returned by the expressiom. get R() in {RR,R} = referencefcfy)

the statementx) will be an instance of the loaded class S, cct load"({RR,R}) > S’ U {(Cfgg, Cl1), (Cfgy, Cl2) }
cfgy, cli) sinceRR was loaded bycl; and resolution of] i cl-] cl.
(R i?l1 the)classRR is done wrt.cl;. On the other hand, 5", 60 vent((Car, cho)) > 57U (Cfaa, Ch). (€,)}
the R appearing inRT will be loaded bycl, and therefore ~ The effect of loading andRR can be found by the follow-
yield (cf,,,cl,). These two classes are not the same and INg deductions. Assume for the moment that classes are
the assignment should fail. However, if only the names of l0aded in the order they appear in the text. Then
Fhe classes are checkeql for equa_lity t_hen the assignment S, cch load* ({RR,R}) > S' U {(Cfag,), (Cfay, Cl2)}
is deemed correct, leading to a situation where the once
privat e fieldi of classRis now consideregubl i c. since
See the report by Saraswat [13] for an extensive discussion
of this problem.
In this section we show how this problem and its so-

W(cc.cl, RR) = W(cly, RR) = (cfgg, Ch)
supeKcfpy) = Object

lution can be become apparent by analysing the program S’,cct load(0bject) > '
using our formalism. The following deduction shows how S’,cctk load(RR) > S’ U {(cfgg, cli)}
the machine state evolves by linkiJ when the current and
classce has been loaded by class loadkri.e., cc.cl= cls.
We make the assumption that loading and linking the class W(cc.clR) = W(cly, R) = (cfg,, Clo)
nj ect with the system class loadscl does not affect supekcf,,) = Object
the statei.e., that S’ U{(Cfe, €1}, cct load(Object) >
{ S, cck load(Object) > S and S"U {(cfgp,ch)}
If cc.cl = sclthen)
S,cck link(Object) > S. S’ U {(cfgg, cl)}, cck load(R) > S” U {(cfgg, Cli), (Cfpy, Cla) }

Executing the code dRT in stateS”’, ccleads to executing
the instruction

invokevirtua((RR, get R()))

whose effect on the state of the machine can be determined

according to the rule from Section 6.4 defining this instruc-
tion:

origin(RR.getR()) = RR

S",cch link(RR) > S" U {(cfg,,cli)}
S" cclk invokevirtua{(RR,get R())) > S" U {(cfg,,cl)}

which leads to analysing the linking BR. The class loader
of the current class has already loadrRi] we omit the for-
mal proof that re-executinpad(RR) in stateS”, cc does
not affect state5”’. However, the verification oRR leads
to the loading of all classes mentioned in its methods.

S" cct load(RR) > S
(cfrr, Cli) = W(cc.cLRR)
supelcfyy) = Object
S" cck link(Object) > S”
S" cck verify((cfgg, cly)) > S” U {(cfz,, ch)}

since the verification oRR satisfies

{R} = referenceg&fy;)
S" Fload((cfgg,cli), R) > S” U {(cfgy,ch)}

S" cck verify((cfgg, cl)) > S” U {(cfz,,ch)}

where the second premiss is deduced as follows:

W(cly,R) = (cfg,, ch)
supefcfy,) = Object
S" cck load(Object) > S”
S" Fload((cfgg,clh), R) > S” U {(cfgy,ch)}

The state after invoking the methagbt R thus looks as
follows:

Su {(CfRT: C|2)= (CfRR7 C|1)> (CfR27 C|2)> (Cfm: Cll)}
and the last two loaded classes satisfy
namé(cfy,, cly).cf) = namé(cf;,, cl;).cf)

from which the type confusion arises. More precisely, the
verification should find an error as follows. The faulty
statement (marked with an asterisk in class @fg;) is
implemented by a call tanvokevirtual with argument
RR. get R() followed by an assignment operatiputfield
to RT. r. When type checking the latter instruction, the

simulated run-time stack will contain the class of the re-
sult of RR. get R() (i.e, (cfg,,cly)) on top of the class
of the invoking objecti(e., (cfy;, clz)), and the following
deduction would be required to hold.

ST= (cfgy,cly) = (Cfgp, Clz) =2 ST

r = (RT,r)

r member-of(cfg;, cls)

r. = member-typ@V(cc.cl, origin(r)).cf,r)
= member-typ@V(cl, RT).cf, r)
= member-typgcf,;,cl).cf,r) =R

r. € Class
(cfy,,cli) subd W(ccclR)
=W(cly, R
= (cfgy, cla)

S, cc, ST typecheckputfield (RT, r)))

What has become apparent from the formalisation
is that this deduction is not valid: the predicate
(cfgy, cly) sub (cfy,, cly) does not hold because the class
loaders are different. The error committed by the JVM is to
implementthe subrelation by using only the name equiv-
alence mentioned above without checking that the class
loaders are the same.

8 Related work and avenues for further re-
search

The linking process has not received much attention
from the semantics community so far. Its importance has
been recognised recently by Cardelli [2] who proposes a
formalisation of linking as a process of combining program
fragments. The main goal in [2] is to provide a formal basis
for the design of programming languages and module sys-
tems and it considers only static linking. A formal study
of dynamic linking and its interaction with static typing
is reported by Dean [3]. The paper presents a model of
dynamic linking which is closely related to Java and pro-
poses a restriction on the dynamic linking operation in or-
der to ensure its soundness with respect to the static type
checking. The proof has been carried outin PVS and Dean
provides only a sketch of its structure. This restriction on
dynamic loading imposes that the (class types) context is
monotonically increasing (a new context must always be
a consistent extension of the previous one). The practi-
cal consequence for implementors is that no class defini-
tion should be loaded more than once for each class loader,
which is also required and implemented in the lastest ver-
sions of JVM. In contrast to this work, we detail the rble of
the class loader identity in the relationship between types
and classes and the interaction between dynamic loading
and visibility rules rather than static typing.

The formalisations of the semantics of Java published contains a comprehensive definition of the instruction set
so far deal exclusively with either the type system [4, 14] of the Java Virtual Machine (only some instructions can-
of the compiler or the reduction rules of the virtual ma- not be described precisely because they require concrete
chine [1, 12]. Drossopoulou and Eisenbach [4] presents representations of the state). This specification was pre-
a formalisation of the type system of a substantial sub- cise enough to reveal a number of ambiguities and errors
set of Java (including arrays, dynamic method binding, in [9]. Because of its low level and exhaustive nature, this
object creation, exception handling, ...). The type in- specification is in fact close to a formal reference manual
ference system annotates Java programs with types andand it is not evident whether it can easily be exploited to
the operational semantics of annotated programs is specsupport formal reasoning on Java programs. In contrast to
ified in terms of a rewrite system defining a relation be- Bertelsen, we have focussed here on one specific aspect
tween configurations (tuples of terms and states). A sub- of the semantics (the visibility rules, their use in the vir-
ject reduction property is then established expressing thetual machine and their dynamic evolution through dynamic
fact that well-typed programs rewrite either to an excep- loading) in order to highlight the choices made in the spec-
tion or to another well-typed term of the same type (up to ification of the Java language and their impact on security.
the subclass/subinterface relationship). This shows a form Further work is still needed to relate our inference sys-
of soundness of the type system for this subset of Java.tems to that of Bertelsen. We believe however that the
A variation of this formalisation has been expressed and work described here suggests another, more promising, ap-
mechanically verified by Syme using a higher-order logic proach: rather than providing the full semantics of a com-
proof system calle®eclare[14]. The formalisation of the plex programming language from scratch, it would be more
type system of Java is extremely useful both for a better un- tractable (and enlightening) to define different views of the
derstanding of the language and for discovering mistakes semantics and then show their integration and consistentcy.
or omissions in the informal specifications. The cited work This notion of view is thus close to tliacetsin Action Se-
however does not consider dynamic loading and visibility manticg [11]. It should be clear that all the contributions
rules (modifiers) which play a significant role in the secu- reviewed here (except [1] which aims at comprehensive-
rity of Java. These aspects are precisely the core of ourness) focus on complementary aspects and shed some light
contribution. On the other hand, we do not deal with type on the language. Determining what the most interesting
checking ourselves, considering it an orthogonal issue. So,views of the semantics should be and how they interfere is
the results presented in this paper are complementary tocertainly one major avenue for future research in this area.
[4, 14]. This complementarity goes in both directions: visi- Another important extension of the existing results is
bility rules should be taken into account within type check- the formalisation of specific security policies for Java ap-
ing and a form of type checking should be included in the plications [5, 6, 7] and the study of the impact of the safety
“load time” verifications of the abstract machine. This in- properties studied so far on security issues. The soundness
tegration is a natural avenue for further work. Note how- of the type system and its interaction with dynamic loading
ever that the formalisation proposed by Drossopoulou and js definitely a prerequisite to enforce security (because type
Eisenbach would need to be reformulated to be used inerrors can be exploited to breach security rules) but secu-
this context because it applies to source code whereas waity goes beyond mere type checking. What we would like
need verification rules of the byte code. To the best of our to ensure ultimately is confidentiality and integrity proper-
knowledge, the only attempt at defining byte code verifi- ties. A short review of existing works in this direction can
cations formally has been carried out by Qian [12] who be found in [15].
includes a proof of soundness of a bytecode verifier with
respect to a simplified specification of the Java virtual ma- References
chine. However, as opposed to the work described here, [1] P.Bertelsen. Semantics of Java byte code. Technicaltep
Qian starts with the “closed world assumption” (all classes Department of Information Technology, Technical Univer-
have been previously loaded into the system by a single sity of Denmark, March 1997.
class loader) and does not take visibility rules into account. [2] L. Cardelli. Program fragments, linking and modulariza

tion. InProc. of 24th ACM Symposium on Principles of Pro-

Bertelsen [1] presents a very precise definition of the gramming Languagepages 266-277. ACM Press, 1997.

virtual machine based on the informal specification in [9].

In addition to the heap and the environment, the state of 7The motivations for facets in Action Semantics are very maicing

the machine includes a stack of frames, each one corre-the lines of the above discussion (tackling the complexithe semantics

sponding to a method invocation. A frame consists of a °f 6@ programming language and providing a better insighihe main
. design choices through a separation of concerns) but tipeggent inde-

program counter, an operand stack, a set of local variablespendent kinds of information (like functionality, commaations, decla-

and a current method identifier. The report by Bertelsen rations).

[3] D. Dean. The security of static typing with dynamic linki.
In Proc. of 4th ACM Conf. on Computer and Communica-
tions Securitypages 18-27. ACM Press, 1997.

[4] S. Drossopoulou and S. Eisenbach. Java is type safe — prob
ably. In11th European Conference on Object Oriented Pro-
gramming June 1997.

[5] L. Gong. Going beyond the sandbox: An overview of the
new security architecture in the Java development kit h2. |
Proc. of USENIX Symposium on Internet Technologies and
SystemsDecember 1997.

[6] L. Gong. Java security: Present and near futuEEE Mi-
cro, May-June:14-19, 1997.

[7] L. Gong. New security architectural directions for Java
Proc. of IEEE COMPCONpages 97-102, 1997.

[8] J. Gosling, B. Joy, and G. Steel€he Java Language Spec-
ification. Addison-Wesley, 1996.

[9] T.Lindholmand F. YellingThe Java Virtual Machine Spec-
ification. Addison-Wesley, 1997.

[10] G. McGraw and E. FeltenJava Security: hostile applets,
holes and antidotes]. Wiley & Sons, 1997.

[11] P. Mosses. Action Semantigsvolume 26 ofCambridge
Tracts in Theoretical Computer Scienc€ambridge Uni-
versity Press, 1992.

[12] Z. Qian. A formal specification of Java virtual machime i
structions. Technical report, Universitat Bremen, 1997.

[13] V. Saraswat. Java is not type-safe. Technical repdr& R
Research, 1997ht t p: / / www. r esear ch. att. com
~Vj/bug. htm .

[14] D. Syme. Proving Java type soundness. Technical Report
427, Cambridge University, June 1997.

[15] T. Thorn. Programming Languages for Mobile Co&&M
Computing Survey$eptember 1997.

